Dicker Turbidit = grosses Flutereignis? Korngrössenanalyse an Flutturbiditlagen alpiner Bergseen

Stand der Wissenschaft

Verschiedene wissenschaftliche Publikationen gehen davon aus, dass es einen Zusammenhang zwischen der Dicke einer Turbiditlage und der Stärke des zum Turbidit führenden Niederschlagsereignisses gegeben hat. Diese Annahme konnte bisher aber nicht bewiesen werden.¹

Zentrale Messidee

Um die Turbiditdicke direkt mit der Stärke des Niederschlagsereignisses in Verbindung zu bringen wurden die grössten im Zufluss mitgeführen Körner als ein direktes Mass für die Fliessenergie des Zuflusses gemessen.

Abbildung 1: Glockenförmige Verteilungskurve der Korngrössenmessung einer Sedimentprobe

Aufbereitung der Proben

Alle Proben wurden mit Sauerstoffperoxid (H_2O_2) oxidiert um alle organischen Partikel zu entfernen (ausser Diatomeen).

Abbildung 2: Smearslides der Sedimentproben zum Grössenvergleich. Rechte Bilder Hinterburgsee (Probe mit H₂O₂ behandelt), linke Bilder Alzascasee (Probe nicht mit H₂O₂ behandelt). Obere Bilder normale Dursichtaufnahme, untere Bilder polarisiertes Licht. Diatomeen können Korngrössenmessungen am Hinterburgsee verfälschen.

DERDW Departement Erdwissenschaften

Kontakt: Sascha Winterberg saschaw@student.ethz.ch 31. Mai 2012

Lago d'Alzasca Fläche: 10.4ha, Einzugsgebiet: 116ha Geologie: Kristallin

Abbildung 3 (oben): Lage des Hinterburgsees (HIN) und des Lago d'Alzasca (ALZ) auf der Schweizerkarte. (bearbeitet nach Swisstopo digitale Reliefschattierung, 2012)

Abbildung 4 (links) und Abbildung 5 (rechts): Übersichtskarten 1:25'000 des Lago d'Alzasca und des Hinterburgsees. Die rot umrandete Fläche stellt das Einzugsgebiet dar. (bearbeitet nach Swisstopo Landes-

karte, 2012)

Abbildung 6: Korndurchmesser und kumulierte Dicke der Turbidite (Wirth, in prep.) im Verlauf der Zeit im Lago d'Alzasca. Der hellgraue Bereich ist eine Messlücke.

Abbildung 8: Korndurchmesser aufgetragen zur Dicke der Flutlage im Lago d'Alzasca. Die drei Quantile haben bei beiden Seen eine ähnliche Regression.

Betreuer Bachelorarbeit: Dr. Adrian Gilli, Geologisches Institut, ETH Zürich Prof. Dr. Flavio Anselmetti, Oberflächengewässer, EAWAG Dübendorf

Hinterburgsee Fläche: 4.5ha, Einzugsgebiet: 118ha (+40ha) Geologie: Kalkstein

Jahr (cal yr) [a]

Abbildung 7: Korndurchmesser und kumulierte Dicke der Turbidite (Glur, in prep.) im Verlauf der Zeit im Hinterburgsee. Der hellgraue Bereich ist eine Messlücke.

Abbildung 9: Korndurchmesser aufgetragen zur Dicke der Flutlage im Hinterburgsee. Die drei Quantile haben bei beiden Seen eine ähnliche Regression.

Referenzen (alle zu'):

Brown, S. L., Bierman, P. R., Lini, A., and Southon, J., 2000, 10 000 yr record of extreme hydrologic events: Geology, v. 28, no. 4, p. 335-338.

Mazzucchi, D., Spooner, I. S., Gilbert, R., and Osborn, G., 2003, Reconstruction of Holocene

climate change using multiproxy analysis of sediments from Pyramid Lake, British Columbia, Canada: Arctic Antarctic and Alpine Research, v. 35, no. 4, p. 520-529. Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J. C., and Savoye, B., 2003, Marine hyperpycnal flows: initiation, behavior and related deposits. A review: Marine and Petroleum Geology, v. 20, no. 6-8, p. 861-882.

Einflussfaktoren auf Turbidite

- Ausräumen von Lockersedimenten
- Klimaschwankungen
- Dauer des einzelnen Ereignisses
- Flora
- Geologie
- Topographie
- Batymetrie (Fläche und Form des Beckens)
- Antropogene Einflüsse:
- Bewirtschaftung

Resultate

blem sein.

Ausblick und offene Fragen

Abbildung 10: Korndurchmesser aufgetragen zur Dicke der Flutlagen des Lago d'Alzasca und des Hinterburgsees und die Rutschungslagen des Hinterburgsees. Zur besseren Visualisierung wurden Domänen eingezeichnet.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Zeitliche Abhängigkeiten im Einzugsgebiet:

Geographische Abhängigkeiten:

- Die Seen unterscheiden sich stark (generelle Dicke der Turbidite, Grösse der Sedimentkörner).
- Die maximale Korngrösse und die Dicke einer Flutlage sind miteinander korreliert.
- Jeder See hat eine eigene Korrelation von Dicke und maximaler Korngrösse.
- Diatomeen können bei kleinen Korngrössen ein Pro-
- Korngrössenmessung als Kriterium zur Unterscheidung von Turbiditen und Rutschungen?
- Zusammenhang zwischen Korngrösse und Ablagerungsvolumen?

- Noren, A. J., Bierman, P. R., Steig, E. J., Lini, A., and Southon, J., 2002, Millennial-scale storminess variability in the northeastern United States during the Holocene epoch: Nature, v. 419, no. 6909, p. 821-824.
- Schneider, H., Hoefer, D., Irmler, R., Daut, G., and Maeusbacher, R., 2010, Correlation between climate, man and debris flow events - A palynological approach: Geomorphology, v. 120, no. 1-2, p. 48-55.
- Wilhelm, B., Arnaud, F., Enters, D., Allignol, F., Legaz, A., Magand, O., Revillon, S., Giguet-Covex, C., Malet, E., 2011, Does global warming favour the occurrence of extreme floods in European Alps?